Observation of 'missing' levels in the long-range potential of ultracold Cs dimers

Koray Dinçer^{1,2}, Jakub Dobosz¹, Antoni Grabowski¹, Michał Tomza¹, <u>Mariusz Semczuk</u>^{1,†}

¹Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warszawa, Poland ²Current address: eleQtron GmbH, Heeserstraße 5, 57072 Siegen, Germany †corresponding author's email: msemczuk@fuw.edu.pl

In this talk I will describe the experimental work we have done with our ultracold cesium-potassium mixture apparatus [1, 2] that led to the observation of two 'missing', lowest-lying vibrational levels in the outer-well of the $0_g^-(6S_{1/2} + 6P_{3/2})$ molecular potential of cesium dimers. According to theoretical predictions of Bouloufa et al. [3], the introduction of these levels is necessary to provide a numerical form of the molecular potential curve that would explain existing experimental data available for the states located in this long-range well. The measurements provide an unambiguous confirmation of theoretical predictions, concluding several unsuccessful attempts made by other research groups. With this work, a proof is provided that a previous study that claimed the discovery of these 'missing' levels [4] in reality reported levels belonging to another molecular potential.

Figure 1: (left) Photoassociation spectra of the 'missing' levels in the $0_g^-(6S_{1/2} + 6P_{3/2})$ molecular potential. (right) Comparison of the obtained results with previous state of the art spectroscopy of cesium dimers.

Acknowledgments

This research was funded by the Foundation for Polish Science within the HOMING programme and the National Science Centre of Poland (Grant No. 2016/21/D/ST2/02003 and a postdoctoral fellowship for M. S., Grant No. DEC-2015/16/S/ST2/00425).

References

- [1] P. Arciszewski, MSc Thesis, University of Warsaw (2019)
- [2] K. Dincer, PhD Thesis, University of Warsaw (2024)
- [3] N. Bouloufa, A. Crubellier, and O. Dulieu Physical Review A 75, 5 (2007).
- [4] Y. Zhang, J. Ma, J. Wu, L. Wang, L. Xiao, and S. Jia, *Physical Review A* 87:030503 (2013)