Observation of Individual Feshbach Resonance states in Metastable Neon and HD Collisions

Arijit Das¹, Yufeng Wang¹, Baruch Margulis², Karl Horn³, Meenu Upadhyay⁴, Markus Meuwly⁴, Christiane Koch³, Edvardas Narevicius^{1 †}

¹Faculty of Physics, Technische Universität, Dortmund, Germany

²National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899-8441 USA

³Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin,

Germany

⁴Department of Chemistry, University of Basel, Basel, Switzerland

† Corresponding author's email: edvardas.narevicius@tu-dortmund.de

Our microscopic understanding of inelastic and reactive scattering mechanisms relies on the synergy between state-of-the-art quantum calculations and high-resolution experimental observations. In a previous experiment [1], using ion-electron coincidence velocity map imaging, we observed the decay dynamics of Feshbach resonance states in Penning ionization collisions between metastable neon (Ne^{*}, ${}^{3}P$) and H₂ molecules. It was hypothesized that limiting the number of accessible partial waves could provide a clearer dynamical picture of Feshbach resonance decay, which remains largely elusive.

Here, we report the direct observation of Feshbach resonance states in Ne^{*}–HD collisions. The Ne^{*}–HD system provides an ideal platform for studying Feshbach dynamics, as it features a well-isolated *p*-wave ($\ell = 1$) resonance at 22 mK [2], enabling access to a regime dominated by a single partial wave. By employing a merged beam setup combined with ion-electron coincidence velocity map imaging, we performed state-resolved measurements of vibrationally excited HD⁺ product ions.

For each vibrational state of HD⁺, we resolved the corresponding rotational levels. Within each rotational level, we observed distinct substructures corresponding to individual Feshbach resonance states of the triatomic Ne–HD⁺ complex. Signatures of these Feshbach states appeared not only in the *inelastic scattering channel* (HD⁺), but also in the *reactive channels* (NeH⁺ and NeD⁺), highlighting a rich interplay between inelastic and reactive processes mediated by the Feshbach complex. Such high-resolution measurements of Feshbach states offer a stringent benchmark for evaluating the accuracy of theoretical interaction potentials.

Figure 1: (a) Full kinetic energy distribution of HD⁺ product ions following Ne^{*} + HD ($\nu = 1$) collisions. (b) Zoomed-in view highlighting rotational substructure and comparison with convolved theoretical predictions. The observed substructure arises from individual Feshbach resonance states of the Ne–HD⁺ triatomic Feshbach complex.

References

- [1] B. Margulis, K.P. Horn, D.M. Reich, M. Upadhyay, N. Kahn, A. Christianen, A. van der Avoird, G.C. Groenenboom, M. Meuwly, C.P. Koch, and E. Narevicius, *Science* **379**, 77 (2023).
- [2] B. Margulis, P. Paliwal, W. Skomorowski, M. Pawlak, P.S. Żuchowski, and E. Narevicius, *Phys. Rev. Research* 4, 043042 (2022).