Observation of Fermi-surface-deformations in ultracold polar molecules

Sebastian Eppelt^{1,2}, Shrestha Biswas^{1,2}, Christine Frank^{1,2}, Weikun Tian^{1,2}, Immanuel Bloch^{1,2,3}, and Xinvu Luo^{1,2}

¹Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Straße 1, 85748 Garching, Germany ²Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799 München, Germany ³Faculty of Physics, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany †corresponding author's email: xinyu.luo@mpq.mpg.de

Ultracold dipolar molecules are a promising platform for exploring exotic quantum many-body phenomena thanks to their long-range dipole-dipole interaction. In a degenerated dipolar Fermi gas, the competition between kinetic and interaction energy can modify the momentum space distribution, leading to Fermi-surface-deformations (FSD) [1, 2, 3]. Here, we report on the first observation and systematic study of these deformations in ultracold polar molecules.

To create a stable, low-temperature dipolar molecular Fermi gas of ²³Na⁴⁰K, we employ a dual-color microwave (MW) shielding scheme [4], reaching inelastic loss rates as low as 2×10^{13} cm s⁻¹ at 400 nK. This is almost 3 times lower compared to our previous record using only circularly polarized MW and enables us routinely create deeply degenerate gases at $0.25 T/T_F$. Using the two MW fields gives us full control over the dipolar interaction. Both its strength and direction are now tunable via the ellipticity of the circularly-polarized and relative Rabi frequency of the linearly-polarized MW field, giving rise to FSD of varying direction and magnitude. This work constitutes a starting point for further investigation into Fermi gases with tunable anisotropic dipolar interactions.

Figure 1: (a) Aspect ratio for three selected ellipticities ξ of the circularly polarized MW field at different temperatures. Obtained from Fermi-Dirac fit to absorption images after 14 ms time-of-flight (TOF). Bands show theory predictions for $\sqrt{\langle k_x^2 \rangle / \langle k_y^2 \rangle}$ by Wei Zhang. (b), (c) Images obtained by subtracting TOF image rotated by 90° from original image $\xi \approx -10$ (b) and $\xi \approx +10$ (c) to reveal elliptical shape of the cloud. Orientation of the cloud follows the orientation of interaction, which is different by roughly 90° degrees between the two cases.

Acknowledgments

Theoretical calculations and simulations have been carried out by Wei Zhang, Fulin Deng, and Tao Shi (Institute of Theoretical Physics, Chinese Academy of Sciences).

References

- [1] T. Miyakawa, T. Sogo, and H. Pu, Phys. Rev. A 77, 061603 (2008).
- [2] V. Veljić et al., New J. Phys. 20, 093016 (2018).
- [3] V. Veljić, A. Pelster, and A. Balaž, Phys. Rev. Res. 1, 012009 (2019).
- [4] N. Bigagli et al., Nature 631, 289–293 (2024).
- [5] X.-Y. Chen et al., Nature 614, 59–63 (2023).